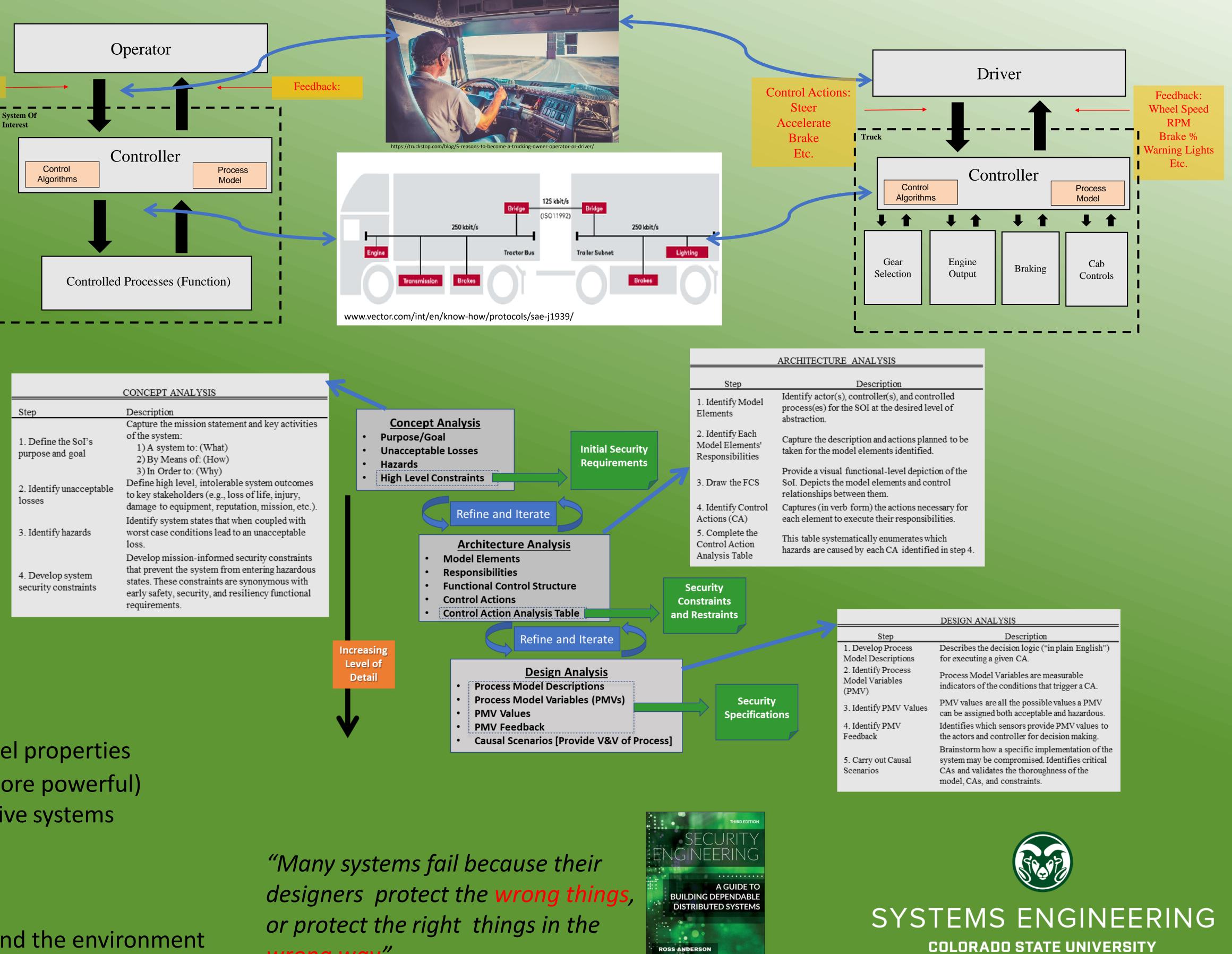
Overview:

- **Based System Theoretic Process Analysis**
- **Consider Complexity of Interactions**
- Model System of Interest using control structure
- Treat Security as Functional Requirement to Allow trade offs from Conceptual Design


Difference from Traditional Methods:

- Shift From 'Bolt On' to 'Baked In' Security
- Method is Threat Agnostic
 - Allows for security against undefined future threats
- Requirements generated address both Safety and Security
- Maps to existing SSE Processes

	Cyber-Physical System Security Phases				
	Concept Analysis	Architectural Analysis	Design Analysis		Step
Purpose	Determine Initial Security Requirements	Determine "Design-To" Constraints and Restraints	Determine "Build-To" Criteria		1. Def purpos
NIST 800-160 SSE Processes	 BA - Business Analysis SN - Stakeholder Needs SA - Systems Analysis 	 SR - System Requirements Definition AR - Architectural Definition SA - Systems Analysis 	 DE - Design Definition SA - Systems Analysis 		2. Ider losses 3. Ider
SAE J3061	Feature Definition Initiation of Cybersecurity Lifecyle Initial Cybersecurity Concept Cybersecurity Goals	Threat Analysis and Risk Assessment Functional Cybersecurity Concept	Technical Cybersecurity Concept Verification/Validation of Cybersecurity Goals Refined Cybersecurity Assessment		4. Dev securi

Key Tenets:

- "Function Begets Form"
- Treat safety (and security) as emergent, system-level properties
- Leverage Systems Theory to provide alternative (more powerful) explanation for losses in complex, software intensive systems
- Losses involve a complex, dynamic
 - "process"
 - -- Not simply chains of failure events
 - -- Arise in interactions among humans, machines and the environment

•••••

A Top Down Approach to **Cyber-Physical** System Security Trae Span Advisor: Dr. Jeremy Daily

wrong way"

